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1 Introduction

Massive open online courses (MOOCs) became popular among students and
educators, by providing students access to open, interactive and distant
teachings . MOOCs platforms collect large amount of data on students,
enabling teachers to gain useful feedback on their courses. Student activity
feedbacks, such as answers success rate or response times, give the opportu-
nity for teachers to improve the learning experience. However this collection
of data brings significant privacy concerns. The information collected on
students may be very sensitive, and could be misused. For instance, the
platform could leak results from a personality test, which could encourage
discrimination or bullying of students.

Our goal is to prevent the data collected by the platform to be personally
identifiable. Doing so would protect the students’ privacy while preserving
the utility of the data for educators. Network-level and application-level
anonymity are needed to prevent student activities on the platform to be
identifiable. In this contribution, we focus on ensuring network-level unlink-
ability, to provide anonymous communications between students and the
platform. For application level unlinkability, anonymous credentials [13]
can be used to protect students’ identity, while enabling access control on
the platform.

In this work, we want to modify an existing online classroom platform,
FROG [1], to let students use the platform anonymously. We seek a solution
that is easy to use, with no software installation or configuration needed from
students. Moreover this solution should be portable to other platforms.

We built a prototype solution on top of Lightnion [11], a JavaScript
library that provides anonymity at the network layer for simple HT'TP re-



quests. Lightnion does not support the WebSocket protocol, which is used
by FROG. Hence, we extended Lightnion to support WebSockets so that all
communications between students and FROG could be anonymous.

2 Background

2.1 Tor

In this work, we extended the Lightnion library, which uses Tor [6] to provide
network anonymity.

Tor enables anonymous communications at the network level between a
Tor client and an application server, running on top of TCP. To communicate
with an application server anonymously, an application has to implement
a Tor client. The Tor client exposes a TCP socket to the application, and
routes this socket’s messages through the Tor network, implementing onion
routing [8] to provide anonymity. A Tor client randomly selects three Tor
nodes, forming a circuit from the first to the last. It then establishes a TLS
session with the first node, and uses this session to establish another one
with the second node, by encapsulating the second session into the first.
It proceeds similarly for the third node. At the end of the third node is
exposed a real TCP session, between the third node and the application
server. This routing technique makes it difficult to determine both ends of
the logical connection by a passive adversary.

Tor protects against network surveillance and traffic analysis but does
not protect against a global passive adversary capable of sniffing the client’s
and server’s network. Tor also protects from successive connection linkabil-
ity. While constructing the circuit, Tor nodes are chosen randomly, therefore
successive connections cannot be linked to the same client from the appli-
cation server.

2.2 Lightnion

In this section we explain what Lightnion [11] is and what we extended it
with.

Lightnion enables simple browsers to access webpages through the Tor
network. It is a JavaScript library that can be shipped in web applica-
tions wanting to provide anonymity for their users. This way, users do not
need to install the Tor browser or configure their browser’s settings to gain
anonymity.



The Lightnion library does not connect directly to the Tor network, as
browsers do not allow making plain TCP sockets programmatically. Tor
clients, however, need to open TCP connections to Tor nodes to follow the
protocol. To circumvent this limitation, the Lightnion library implements a
modified Tor client that runs on the users’ browser. Since this client cannot
directly connect to Tor nodes, its messages are encapsulated over a Web-
Socket connection to a Lightnion proxy. This Lightnion proxy then receives
the WebSocket messages, translates them from WebSocket to TCP, and for-
wards them to Tor nodes. When the Lightnion proxy receives messages from
Tor nodes, it proceeds oppositely. Messages from Tor nodes are encapsu-
lated into the WebSocket connection, forwarded to the Lightnion client, that
deciphers and delivers them to the web application. The Lightnion proxy is
therefore seen as a Tor client by the other Tor nodes. However this proxy
does not hold the cryptographic keys needed to decipher the Tor messages
it receives, so the confidentiality of the user’s connection is kept the same.

To web applications running on the browser, the Lightnion library offers
a TCP-like socket, enabling the implementation of anonymized TCP appli-
cations. It is already possible to fetch HT'TP webpages using Lightnion, but
more complex web applications often requires WebSockets. Consequently,
in this work we implemented WebSockets over Lightnion.

2.3 WebSocket

The WebSocket protocol is a full-duplex communication protocol working on
top of TCP. WebSockets are message-oriented, and provide binary and text
communications, with support for fragmentation. The protocol is supported
by the major web browsers (since Chrome v16, Firefox v11, ... [5]) and stan-
dardized by the RFC 6455 [7]. Full-duplex communications were previously
emulated by HTTP streaming, long polling [10], or other mechanisms.

To our knowledge, there exist no WebSocket protocol implementation
in JavaScript for the browser. We therefore implemented the WebSocket
protocol in JavaScript, to be used in the browser and emulating the standard

WebSocket.

3 Setting

To introduce the privacy properties we seek to implement, we consider the
scenario of an online classroom, see Figure 1. Users (students) use a web
application hosted on an endpoint (the platform), to perform tasks written
and gathered by an administrator (the professor). Task results contains
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Figure 1: High level setting. Students access the platform, retrieve tasks and
submit task results. The professor then gather all results from students.
Traffic between the students and the platform can be anonymized using
Lightnion.

user data (such as questionnaire results) along with metadata linked to
the user activity (access times, task duration, network address, ...). The
administrator creates tasks to be done by the users, and can retrieve the
task results from the endpoint.

3.1 Privacy Goals

Sender anonymity [12]. Users connecting to the endpoint should be
anonymous. Explicitly, the endpoint, administrator and other users should
not be able to identify a user from the set of all possible users. If the access
to the endpoint is limited, we want authorized users to be anonymous in the
set of authorized users.

Activity unlinkability [12]. Successive connections from users should be
unlinkable. Explicitly, if a user connects successively to the endpoint, the
endpoint or administrator should not be able to link these two connections
to the same user.

3.2 Privacy Non-goals

If the professor has access to the local network used by students, he may
perform traffic analysis to deanonymize students. For example, if a single



student accesses the platform and submits a task, then the professor could
deanonymize this student. Having access to the local network of students,
the professor could filter out the only student connected to the platform and
infer that this is the student having submitted the task. This simple example
shows that deanonymization of students is possible if the professor has access
to the local network of students. We therefore assume that the professor does
not inspect the traffic of the students. To avoid this assumption, anonymous
networks with stronger guarantees could be used, for example Atom [9].
Moreover, we do not seek to avoid privacy leaks performed by users
themselves. We do not prevent a user from leaking information on data it
submits, for example by giving its real name when completing a task.

3.3 Threat model

We consider a practical threat model that can be applied to a real world
scenario. It puts little trust on the administrator and endpoint.

Administrator as a Covert Adversary. We assume the administrator
is covert, that is, he may behave malisciously if the chance of getting detected
is very low. This assumption implies that the administrator will always point
the users to use a privacy-respecting version of the web application, e.g. by
pointing to a deployment of our solution.

Endpoint as a Covert Adversary. Similarly, we assume the endpoint
is a covert adversary, that may be audited by administrators or users.

4 System

In order to anonymise the users of FROG, we need to ensure that all web
communications between them and the FROG platform are anonymous.
Specifically, FROG uses both HT'TP and WebSockets to communicate with
its users. Lightnion [11] already provides a way to anonymise HTTP con-
nections, with the convenience we aim to achieve. So we based our solution
onto the previous work done in Lightnion [11]. Using Lightnion for an
application-level protocol requires a JavaScript implementation of that pro-
tocol, for the browser. Hence, we added support for WebSocket redirection
to Lightnion.

Our solution completes the Lightnion system described in the original
Lightnion proposal [11]. We added a new party to the system because of
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Figure 2: Lightnion System for untrusted endpoint.

the different threat model: the Lightnion provider. The Lightnion provider
is a server hosting the Lightnion client JavaScript code. The user’s browser
should connect first to the Lightnion provider, retrieving the client code. In
the original Lightnion proposal [11], the provider and endpoint are the same
entity, however, in this model, the platform is not trusted. Therefore we
shifted the trust assumptions to the new entity.

We describe our solution, see Figure 2. Let us suppose a user has been
requested to visit the web application hosted at the endpoint, via the Light-
nion provider’s URL.

First (1), the user enters the URL of the Lightnion provider on its
browser, and retrieves the webpage with the bundled Lightnion client code.
Second (2), the user’s browser establishes a connection to the Lightnion
proxy. Finally (3), the user connects to the endpoint by specifying its URL
in the webpage. In this step, the Lightnion client hosted on the user’s
browser setups a Tor circuit, through the Lightnion proxy, by choosing ran-
dom Tor nodes. This circuit is then used to tunnel HTTP requests and
WebSocket messages to the endpoint.

Trust assumptions. Having added two parties, we need to clarify the
tradeoffs that were made in order to offer the privacy and convenience that
we are looking for.

The Lightnion provider and the Lightnion proxy should not collude with
the administrator nor the endpoint. In particular, this is necessary to avoid
traffic correlation attacks. The Lightnion provider can either be trusted to
give the correct Lightnion client code or untrusted if there is a way for clients



to verify the code received from it.

In a practical setting, these assumptions are realizable if, for example,
the Lightnion provider and the Lightnion proxy are hosted by a different
entity than the teaching team and the platform host.

Privacy properties. We argue that the privacy properties hold.

User Anonymity. This property is provided by Tor. The use of the
Lightnion proxy does not weaken the anonymity of the users [11]. The Light-
nion proxy knows the set of users that are connected to him, but nothing
about the destination or contents of the packets it receives. It’s role is analo-
gous to the entry node of a Tor circuit, because it knows its connected users
and their next-hop in the circuit, but nothing more. The communications
between the user and the provider only leak the access times of the user,
because they download the same webpage and code every time.

Activity Unlinkability. The Tor exit node chosen by the Lightnion
client is random and changes at each connection. The endpoint (or admin-
istrator) sees the exit nodes used by all the users, and may link connections
if the exit node does not change for a user between two connections.

4.1 WebSocket Redirection

To provide a Tor tunnelling of WebSocket messages, we implemented the
WebSocket protocol in JavaScript. To provide a Tor tunnelling of WebSocket
messages, we had to implement the WebSocket protocol in JavaScript. We
implemented it on top of the Lightnion TCP socket, but it should be usable
in other conditions, in particular with Node.js raw TCP sockets.

The websocket library implements a good part of the standard, aiming
to be a drop-in replacement for usual WebSockets clients:

1 <script src= ></script>

2 <script>

3 let url = new URL( )

4

5 // replace this following line

6 let ws = new WebSocket (url, protocols = []);

7

8 // by this line

9 let ws = new LWS(url, protocols = [], lightnionHost =

, lightnionPort = 4990);
10 </script>




The Lightnion WebSocket library was developed respecting the standard
as closely as possible. The library includes tests to verify the correctness
of the implementation, namely on the protocol and the browser interface.
We did not implement subprotocols [7, s. 1.9] nor extensions [7, s. 9], as
there are not needed for our current application. However our library can
be extended to support them in the future.

5 Integration and Evaluation

5.1 Practical integration

As a proof of concept and for future use, we tried to implement the web-
socket redirection into an educational web application named FROG [1].
Description of all steps taken to redirect FROG’s websocket are detailed in
the project repository [3].

FROG uses the meteor framework [2] for deployment, which uses its
own WebSocket when serving a web application to users. To redirect this
WebSocket, modification to the framework itself is required. We tried to
patch the framework, unfortunately dependencies issues prevented us to
fully implement our solution.

In summary, we successfully implemented WebSocket redirection into
FROG, but not into its deployment framework. We believe the recipe to
deploy our solution is valid.

5.2 Experimental setup

To evaluate the JavaScript WebSocket redirection through Lightnion, we
compared it to a non-private browser-provided WebSocket, as well as to a
browser-provided WebSocket proxied through Tor. Moreover, we compared
using our redirected WebSocket implementation to using raw TCP sockets
redirected through Tor, that Lightnion already provides. We will denote by
“WS” the use of the standard WebSocket client, “WS+Tor” the use of the
standard WebSocket client proxied through a Tor network, “LTCP” the use
of the Lightnion redirected TCP socket client, and “LWS” the use of the
Lightnion redirected WebSocket client. We used Firefox 71.0 (64-bit) for
the evaluation.

The experimental setup consists of four entities, as shown on Figure 3:
a browser, a Lightnion proxy, a local Tor network and an endpoint. The
Lightnion proxy will proxy the Lightnion WebSockets and TCP communi-
cations through the Tor test network. The client browser will initiate the
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Figure 3: Experimental Setup

connections to the endpoint, using Lightnion WebSockets, Lightnion TCP
sockets or browser-provided WebSockets, that are proxied or not through the
Tor test network. The local Tor network is constructed using chutney, and
runs 8 Tor nodes (with at least 2 guards and 5 exit nodes). The endpoint
implements several protocols, above the TCP and WebSocket sockets.

We measured four different quantities in order to evaluate our imple-
mentation. First, the round trip time, computed using echo WebSocket or
TCP servers as the endpoint. In the browser, it is the time between the
sending a message and the reception of the reply. Once the socket connec-
tion opened, we successively sent and received 10000 frames. Second, the
connection establishment time, that is, the time taken by the browser to
open a socket connection to the endpoint. Third, the time to first mes-
sage, which is the time taken to open a connection, have the browser send a
message and have the server receive it. Both previous tests were measured
by opening 100 successive socket connections to the endpoint. Finally, we
computed throughput measurements, having first the browser upload to the
endpoint, and then the endpoint upload to the browser, at different times.
Throughput was computed by sending 10MB of data with messages of 1kB.

All measurements where computed using the browser’s internal clock,
except for the time to first message that implied using the endpoint clock.
We measured the time shift between both clocks to be under 2 milliseconds.
The browser clock has a precision of one millisecond.

5.3 Evaluation results

As the numbers in Table 1 show, our solution does not compete performance-
wise with using a Tor enabled browser. The use of Lightnion induces over-
head, by having the browser perform Tor cryptographic operations, protocol
encapsulation, and adding network latency by introducing a proxy. More-



WS WS+Tor LTCP LWS

Round trip time (ms) 0.2476 0.2272 23.65 24.99
p (0.004588)  (0.006583)  (0.09555)  (0.09880)
Connection 6.110 6.440 334.3 480.7
establishment time (ms)  (0.08750)  (0.07563) (4.430) (5.615)
Time to first message 5.490 5.930 312.7 4714
(ms) (0.2259)  (0.1373)  (2.665)  (4.329)
Download " «
throughput (MB/s) 32.89 28.17 1.484 0.5636
Upload 17.61 19.57  0.7762 %  0.3758 *

throughput (MB/s)

Table 1: Experimental results of evaluation, measuring the mean and stan-
dard error (in parentheses). * Due to high CPU utilization during the
throughput experiments, results may be worse than they are in practice.

over, our implementation of the WebSocket protocol introduces significant
performance losses compared to using plain Lightnion TCP socket.

During throughput tests, we observed high CPU utilization with inter-
vals of 100% when evaluating our WebSocket implementation and Lightnion
TCP sockets. Therefore numbers in Table 1 may be worse than they are in
practice. When testing for other measurements, we did not notice such be-
havior and CPU utilization was low. This leads us to think that our solution
is fit for low-throughput applications.

6 Conclusion

WebSockets became a ubiquitous tool in web applications, and supporting
them creates more opportunities to use Lightnion. We now hope to cover
most web application dependencies, by providing both HTTP and Web-
Socket redirection through Tor. Our work also shows that Lightnion can
be extended for arbitrary application protocols running on top of TCP. We
believe our system, once production ready, could be deployed easily in a
real-life scenario, by taking example of our deployment of FROG.

Our implementation does incur large performance tradeoffs, but we be-
lieve it is still useful for low-throughput applications, like FROG. We hope
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the performance can be improved, nevertheless, our solution is by design
slower than plain browser-provided WebSockets.

Few important missing features would be necessary in order to improve
our prototype. In particular, WebSocket subprotocols and extensions are
lacking. Moreover, secure WebSocket (WebSocket over TLS), are not cur-
rently available. They could be easily implemented by taking example on
the support for HT'TPs by Lightnion, but requires the Lightnion proxy to
provide secure WebSockets support.
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A HTTP Redirection

A current limitation of the HT'TP redirection provided by Lightnion is that
it does not follow browser’s fetches. For example, if a user clicks on a link on
a webpage received with Lightnion, the browser will follow the link and fetch
the linked page directly, without using Lightnion. This is a threat to the
privacy of the users of the webpage, since they may think being protected.

To redirect HTTP fetches, we implemented a prototype of an imperfect
solution. A trivial solution would be for the web application to avoid fetches
to other HT'TP resources, but we believe this to be a too large constraint to
support. We found a partial solution that relieves a part of this constraint
from the application.

It consists in a ServiceWorker [4], served by the Lightnion provider, that
intercepts HTTPs fetch requests. Those requests are first blocked by the
ServiceWorker, preventing the user from being exposed to the target domain.
The requests are then modified to be Tor encapsulated and redirected to
the Lightnion proxy. Responses to these requests are then deciphered and
processed as normal responses.

Using this solution, some constraints are still imposed on the web ap-
plication. ServiceWorkers can only intercept fetch that are to the same
origin. In this case the origin is the Lightnion provider, resources pointed
from the webpage using relative references are considered same origin by
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the browser. Hence resources fetch from other websites, such as clicking on
a link to another website, cannot be redirected. Cooperation is still needed
from the platform to not include those resources into the application. An
unexplored solution to this problem would be to process all responses and
convert absolute references to appear as same origin.
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